Исследование применение сложных процентов в экономических расчетах. Финансовая математика: Учебное пособие. Коптева Н.В., Семенов С.П. Потоки платежей. Финансовая рента

Исследование применение сложных процентов в экономических расчетах. Финансовая математика: Учебное пособие. Коптева Н.В., Семенов С.П. Потоки платежей. Финансовая рента

В практических расчетах в основном применяют дискретные проценты, т.е. проценты, начисляемые за фиксированные одинаковые интервалы времени (год, полугодие, квартал и т. д.). Время - дискретная переменная. В некоторых случаях - в доказательствах и расчетах, связанных с непрерывными процессами, возникает необходимость в применении непрерывных процентов. Рассмотрим формулу сложных процентов:

S = P(1 + i) n . (6.16)

Здесь P - первоначальная сумма, i - ставка процентов (в виде десятичной дроби), S - сумма, образовавшаяся к концу срока ссуды в конце n -го года. Рост по сложным процентам представляет собой процесс, развивающийся по геометрической прогрессии. Присоединение начисленных процентов к сумме, которая служила базой для их определения, часто называют капитализацией процентов. В финансовой практике часто сталкиваются с задачей, обратной определению наращенной суммы: по заданной сумме S, которую следует уплатить через некоторое время n , необходимо определить сумму полученной ссуды P. В этом случае говорят, что сумма S дисконтируется , а проценты в виде разности S - P называются дисконтом. Величину P, найденную дисконтированием S, называют современной, или приведенной, величиной S. Имеем:

P = ; P = = 0.

Таким образом, при очень больших сроках платежа современная величина последнего будет крайне незначительна. В практических финансово-кредитных операциях непрерывные процессы наращения денежных сумм, т. е. наращения за бесконечно малые промежутки времени, применяются редко. Существенно большее значение непрерывное наращение имеет в количественном финансово-экономическом анализе сложных производственных и хозяйственных объектов и явлений, например, при выборе и обосновании инвестиционных решений. Необходимость в применении непрерывных наращений (или непрерывных процентов) определяется прежде всего тем, что многие экономические явления по своей природе непрерывны, поэтому аналитическое описание в виде непрерывных процессов более адекватно, чем на основе дискретных. Обобщим формулу сложных процентов для случая, когда проценты начисляются m раз в году:

S =P (1 + i/m) mn .

Наращенная сумма при дискретных процессах находится по этой формуле, здесь m - число периодов начисления в году, i - годовая или номинальная ставка. Чем больше m , тем меньше промежутки времени между моментами начисления процентов. В пределе при m → ∞ имеем:

S = P (1 + i/m) mn = P ((1 + i/m) m) n .

Поскольку (1 + i/m) m = e i , то ` S = P e in .

При непрерывном наращении процентов применяют особый вид процентной ставки - силу роста , которая характеризует относительный прирост наращенной суммы в бесконечно малом промежутке времени. При непрерывной капитализации процентов наращенная сумма равна конечной величине, зависящей от первоначальной суммы, срока наращения и номинальной ставки процентов. Для того, чтобы отличить ставки непрерывных процентов от ставки дискретных процентов, обозначим первую через d , тогда S = Pe .

Сила роста d представляет собой номинальную ставку процентов при m → ∞. Множитель наращения рассчитывается с помощью ЭВМ или по таблицам функции.

Потоки платежей. Финансовая рента

Контракты, сделки, коммерческие и производственно-хозяйственные операции часто предусматривают не отдельные разовые платежи, а множество распределенных во времени выплат и поступлений. Отдельные элементы такого ряда, а иногда и сам ряд платежей в целом, называется потоком платежей . Члены потока платежей могут быть как положительными (поступления), так и отрицательными (выплаты) величинами. Поток платежей, все члены которого положительные величины, а временные интервалы между двумя последовательными платежами постоянны, называют финансовой рентой . Ренты делятся на годовые и р -срочные, где р характеризует число выплат на протяжении года. Это дискретные ренты. В финансово-экономической практике встречаются и с последовательностями платежей, которые производятся так часто, что практически их можно рассматривать как непрерывные. Такие платежи описываются непрерывными рентами.

Пример 3.13. Пусть в конце каждого года в течение четырех лет в банк вносится по 1 млн. рублей, проценты начисляются в конце года, ставка - 5% годовых. В этом случае первый взнос обратится к концу срока ренты в величину 10 6 ´ 1,05 3 так как соответствующая сумма была на счете в течение 3 лет, второй взнос увеличится до 10 6 ´ 1,05 2 , так как был на счете 2 года. Последний взнос процентов не приносит. Таким образом, в конце срока ренты взносы с начисленными на них процентами представляют ряд чисел: 10 6 ´ 1,05 3 ; 10 6 ´ 1,05 2 ; 10 6 ´ 1,05; 10 6. Наращенная к концу срока ренты величина будет равна сумме членов этого ряда. Обобщим сказанное, выведем соответствующую формулу для наращенной суммы годовой ренты. Обозначим: S - наращенная сумма ренты, R - размер члена ренты,
i - ставка процентов (десятичная дробь), n - срок ренты (число лет). Члены ренты будут приносить проценты в течение n - 1, n - 2,..., 2, 1 и 0 лет, а наращенная величина членов ренты составит

R (1 + i) n - 1 , R (1 + i) n - 2 ,..., R (1 + i), R.

Перепишем этот ряд в обратном порядке. Он представляет собой геометрическую прогрессию со знаменателем (1+i) и первым членом R. Найдем сумму членов прогрессии. Получим: S = R ´ ((1 + i) n - 1)/((1 + i) - 1) = R ´ ((1 + i) n - 1)/ i. Обозначим S n; i = ((1 + i) n - 1)/ i и будем называть его коэффициентом наращения ренты . Если же проценты начисляются m раз в году, то S = R ´ ((1 + i/m) mn - 1)/((1 + i/m) m - 1), где i - номинальная ставка процентов.

Величина a n; i = (1 - (1 + i) - n)/ i называется коэффициентом приведения ренты . Коэффициент приведения ренты при n → ∞ показывает, во сколько раз современная величина ренты больше ее члена:

a n; i = (1 - (1 + i) - n)/ i =1/i.

Пример 3.14. Под вечной рентой понимается последовательность платежей, число членов которой не ограничено - она выплачивается в течение бесконечного числа лет. Вечная рента не является чистой абстракцией - на практике это некоторые виды облигационных займов, оценка способности пенсионных фондов отвечать по своим обязательствам. Исходя из сущности вечной ренты можно полагать, что ее наращенная сумма равна бесконечно большой величине, что легко доказать по формуле:
R
×´ ((1 + i) n - 1)/ i → ∞ при n →∞.

Коэффициент приведения для вечной ренты a n; i → 1/i, откуда A = R/i, т. е. современная величина зависит только от величины члена ренты и принятой ставки процентов.

Сложный процент - это сумма дохода, которая начисляется в каждом интервале и присоединяется к основной сумме капитала и участвует в качестве базы для начисления в последующих периодах. Начисление сложных процентов применяется, как правило, при долгосрочных финансовых операциях (например, инвестировании).При расчете суммы будущей стоимости (Sc) применяется формула:

Sc = P * (1 + i)n.

Соответственно, сумма сложного процента определяется: Ic = Sc - P,

где Ic - сумма сложных процентов за установленный период времени; Р - первоначальная стоимость денег; n - количество периодов, по которым осуществляется расчет процентных платежей; i - используемая процентная ставка, выраженная в долях единицы.

Формулы расчета сложных процентов являются базовыми в финансовых вычислениях. Экономический смысл множителя (1 + i)n состоит в том, что он показывает, чему будет равен один рубль через nпериодов при заданной процентной ставке i. Для упрощения процедуры расчетов разработаны специальные финансовые таблицы для расчета сложных процентов, которые позволяют определить будущую и настоящую стоимость денег.

Настоящая стоимость денег (Рс) при начислении сложных процентов равна: Рс = Sc / (1 + i)n

Сумма дисконта (Dc) определяется: D c = Sc - Рс .

При расчете временной стоимости денег в условиях применения сложных процентов необходимо иметь в виду, что на результаты оценки влияет не только процентная ставка, но и число интервалов выплат в течение всего платежного периода, что приводит к тому, что в ряде случаев более выгодно инвестировать деньги под меньшую ставку, но с большим количеством выплат в течение платежного периода.

Оценка стоимости денег при аннуитете связан с использованием наиболее сложных алгоритмов и определением метода начисления процента - предварительным (пренумерандо) или последующим (постнумерандо).1. При расчете будущей стоимости аннуитета на условиях предварительных платежей (пренумерандо) используется следующая формула: SA pre =R * {[(1 + i) n -1] / i} * (1 + i)

где SA pre - будущая стоимость аннуитета, осуществляемого на условиях предварительных платежей (пренумерандо); R - член аннуитета, характеризующий размер отдельного платежа; i - используемая процентная ставка, выраженная десятичной дробью; n - количество интервалов, по которым осуществляется каждый платеж, в общем обусловленном периоде времени. 2. При расчете будущей стоимости аннуитета, осуществляемого на условиях последующих платежей (постнумерандо), применяется следующая формула: SA post = R * {[(1 + i) n -1] / i}

3. При расчете настоящей стоимости аннуитета, осуществляемого на условиях предварительных платежей (пренумерандо), используется следующая формула:PA pre = R * {[(1 + i) - n - 1] / i} * (1 + i)


4. При расчете настоящей стоимости аннуитета, осуществляемого на условиях последующих платежей (постнумерандо), применяется следующая формула: PApost = R * {[(1 + i) - n - 1] / i}

5. При расчете размера отдельного платежа при заданной будущей стоимости аннуитета используется следующая формула: R = SA post * {i / [(1 + i) n - 1]} (В вопросе есть, но думаю это не нужно)

Концепция учета фактора инфляции заключается в необходимости реального отражения стоимости активов и денежных потоков и обеспечения возмещения потерь доходов, вызываемых инфляционными процессами, при осуществлении долговременных финансовых операций.

Инфляция - процесс постоянного превышения темпов роста денежной массы над товарной (включая стоимость работ и услуг), в результате чего происходит переполнение каналов обращения деньгами, что приводит к их обесценению и росту цен на товары.

Рассмотрим наиболее важные термины и понятия, применяемые при оценке инфляционных процессов.

Номинальная процентная ставка - это ставка, устанавливаемая без учета изменения покупательной стоимости денег в связи с инфляцией.

Реальная процентная ставка - это ставка, устанавливаемая с учетом изменения покупательной стоимости денег в связи с инфляцией.

Инфляционная премия - это дополнительный доход, выплачиваемый (или предусмотренный к выплате) кредитору или инвестору с целью возмещения потерь от обесценения денег, связанного с инфляцией.

Для прогнозирования годового темпа инфляции используется формула: ТИг = (1 + ТИм)^12 - 1,

где ТИг - прогнозируемый годовой темп инфляции, в долях единицы; ТИм - ожидаемый среднемесячный темп инфляции в предстоящем периоде, в долях единицы.

Для оценки будущей стоимости денег с учетом фактора инфляции используется формула, построенная на основе модели Фишера: S = P x [(l + Ip) x (1 + T)]n - 1,

где S - номинальная будущая стоимость вклада с учетом фактора инфляции; Р - первоначальная стоимость вклада; Iр - процентная ставка, в долях единицы; Т - прогнозируемый темп инфляции, в долях единицы; n - количество интервалов, по которым осуществляется начисление процентов.

Модель Фишера имеет вид : I = i + а + i * а ,

где I - реальная процентная премия; i - номинальная процентная ставка; а - темп инфляции.

Эта модель предполагает, что для оценки целесообразности инвестиций в условиях инфляции недостаточно просто сложить номинальную процентную ставку и прогнозируемый темп инфляции, необходимо к ним добавить сумму, представляющую собой их произведение i * а.

Необходимо отметить, что прогнозирование темпов инфляции является достаточно сложным и трудоемким процессом, результаты которого имеют вероятностный характер и подвержены существенному влиянию субъективных факторов. На практике для упрощения расчетов и избежания необходимости учета инфляции расчеты выполняются в твердых валютах.

Концепция учета фактора риска состоит в оценке его уровня с целью обеспечения формирования необходимого уровня доходности финансово-хозяйственных операций и разработки системы мероприятий, позволяющих минимизировать его негативные финансовые последствия. Под доходностью понимают отношение дохода, создаваемого определенным активом, к величине инвестиций в этот актив. Предпринимательская деятельность всегда сопряжена с риском. В то же время между риском и доходностью этой деятельности обычно прослеживается четкая зависимость: чем выше требуемая или предполагаемая доходность (т.е. отдача на вложенный капитал), тем выше степень риска, связанная с возможностью неполучения этой доходности, и наоборот. При принятии управленческих решений могут ставиться различные задачи, в том числе: максимизации доходности или минимизации риска, но, как правило, чаще речь идет о достижении разумного соотношения между риском и доходностью. В рамках финансового менеджмента категория риска имеет важное значение при принятии решений по структуре капитала, формированию инвестиционного портфеля, обоснованию дивидендной политики и др.

Для оценки риска применяются качественные и количественные методы, в том числе: анализ чувствительности, анализ сценариев, метод Монте-Карло и др.

Для оценки уровня финансового риска (УР), показателя, характеризующего вероятность возникновения определенного вида риска и размер возможных финансовых потерь при его реализации, применяется формула: УР = ВР х РП , где ВР - вероятность возникновения данного финансового риска; РП- размер возможных финансовых потерь при реализации данного риска.

Концепция и методика учета фактора ликвидности:

1) Величина собственных оборотных средств: WC=CA-CL, где CA – оборотные активы, CL – краткосрочные пассивы.

2) Коэффициент текущей ликвидности: Ktl = оборотные средства/краткосрочные пассивы.

Коэффициент отражает способность компании погашать текущие (краткосрочные) обязательства за счёт только оборотных активов. Чем показатель больше, тем лучше платежеспособность предприятия. Принимая во внимание степень ликвидности активов, можно предположить, что не все активы можно реализовать в срочном порядке. Нормальным считается значение коэффициента от 1.5 до 2.5, в зависимости от отрасли. Значение ниже 1 говорит о высоком финансовом риске, связанном с тем, что предприятие не в состоянии стабильно оплачивать текущие счета. Значение более 3 может свидетельствовать о нерациональной структуре капитала.

3) Коэффициент быстрой ликвидности: Kbl = Краткосрочная дебиторская задолженность + Краткосрочные финансовые вложения + Денежные средства) / (Краткосрочные пассивы – Доходы будущих периодов – Резервы предстоящих расходов) или Kbl = (Текущие активы – Запасы) / Текущие обязательства (показатель должен быть <1. 1 – низкий показатель). Коэффициент отражает способность компании погашать свои текущие обязательства в случае возникновения сложностей с реализацией продукции.

4) Коэф-т абсолютной ликвидности = (Денежные средства + краткосрочные финансовые вложения) / Текущие обязательства или Денежные средства / (Краткосрочные пассивы – Доходы будущих периодов – Резервы предстоящих расходов).

1 слайд

2 слайд

ВВЕДЕНИЕ 1. Актуальность 2. История происхождения. 3. Происхождения обозначения. 4. Правила набора. 5. Сравнение величин в процентах 6. Виды процентов. 7. Факторы, учитываемые в финансово-экономических расчетах. 8. Заключение.

3 слайд

Современная жизнь делает задачи на проценты актуальными, так как сфера практического приложения процентных расчётов расширяется. Актуальность.

4 слайд

Слово «процент» происходит от латинского слова pro centum, что буквально переводится «за сотню», или «со ста». Процентами очень удобно пользоваться на практике, так как они выражают части целых чисел в одних и тех же сотых долях. История происхождения.

5 слайд

Знак % произошёл благодаря опечатке. В рукописях pro centum часто заменялось словом «cento» (сто) и писали сокращённо – cto. В 1685 году в Париже была напечатана книга – руководство по коммерческой арифметике, где по ошибке наборщик вместо cto набрал %. Происхождения обозначения.

6 слайд

В тексте знак процента используется только при числах в цифровой форме, от которых при наборе отделяется неразрывным пробелом (доход 67 %), кроме случаев, когда знак процента используется для сокращённой записи сложных слов, образованных при помощи числительного и прилагательного процентный. Правила набора.

7 слайд

Иногда бывает удобным сравнивать две величины не по разности их значений, а в процентах. Сравнение величин в процентах

8 слайд

Различают простые и сложные виды процентов. При использовании простых процентов процент начисляется на первоначальную сумму вклада (кредита) на протяжении всего периода начисления. Виды процентов

9 слайд

Методы финансовой математики используются в расчетах параметров, характеристик и свойств инвестиционных операций и стратегий, параметров государственных и негосударственных займов, ссуд, кредитов, в расчетах амортизации, страховых взносов и премий, пенсионных начислений и выплат, при составлении планов погашения долга, оценке прибыльности финансовых сделок. Факторы, учитываемые в финансово-экономических расчетах.

В финансовой практике значительная часть расчетов ведется с использованием схемы сложных процентов.

Применение схемы сложных процентов целесообразно в тех случаях, когда:

проценты не выплачиваются по мере их начисления, а присоединяются к первоначальной сумме долга. Присоединение начисленных процентов к сумме долга, которая служит базой для их начисления, называется капитализацией процентов;

срок ссуды более года.

Если процентные деньги не выплачиваются сразу по мере их начисления, а присоединяются к первоначальной сумме долга, то долг, таким образом, увеличивается на невыплаченную сумму процентов, и последующее начисление процентов происходит на увеличенную сумму долга:

FV = PV + I = PV + PV i = PV (1 + i)

– за один период начисления;

FV = (PV + I) (1 + i) = PV (1 + i) (1 + i) = PV (1 + i)2

– за два периода начисления;

отсюда, за n периодов начисления формула примет вид:

FV = PV (1 + i)n = PV kн,

где FV – наращенная сумма долга;

PV – первоначальная сумма долга;

i – ставка процентов в периоде начисления;

n – количество периодов начисления;

kн – коэффициент (множитель) наращения сложных процентов.

Эта формула называется формулой сложных процентов.

Как было выше указано, различие начисления простых и сложных процентов в базе их начисления. Если простые проценты начисляются все время на одну и ту же первоначальную сумму долга, т.е. база начисления является постоянной величиной, то сложные проценты начисляются на увеличивающуюся с каждым периодом начисления базу. Таким образом, простые проценты по своей сути являются абсолютными приростами, а формула простых процентов аналогична формуле определения уровня развития изучаемого явления с постоянными абсолютными приростами. Сложные проценты характеризуют процесс роста первоначальной суммы со стабильными темпами роста, при наращении ее по абсолютной величине с ускорением, следовательно, формулу сложных процентов можно рассматривать как определение уровня на базе стабильных темпов роста.

Согласно общей теории статистики, для получения базисного темпа роста необходимо перемножить цепные темпы роста. Поскольку ставка процента за период является цепным темпом прироста, то цепной темп роста равен:

Тогда базисный темп роста за весь период, исходя из постоянного темпа прироста, имеет вид:

Базисные темпы роста или коэффициенты (множители) наращения, зависящие от процентной ставки и числа периодов наращения, табулированы и представлены в Приложении 2. Экономический смысл множителя наращения состоит в том, что он показывает, чему будет равна одна денежная единица (один рубль, один доллар и т.п.) через n периодов при заданной процентной ставке i. 5>>>

Графическая иллюстрация соотношения наращенной суммы по простым и сложным процентам представлена на рисунке 4.

Рис. 4. Наращение по простым и сложным процентам.

Как видно из рисунка 4, при краткосрочных ссудах начисление по простым процентам предпочтительнее, чем по сложным процентам; при сроке в один год разница отсутствует, но при среднесрочных и долгосрочных ссудах наращенная сумма, рассчитанная по сложным процентам значительно выше, чем по простым.

При любом i,

если 0 < n < 1, то (1 + ni) > (1 + i)n ;

если n > 1, то (1 + ni) < (1 + i)n ;

если n = 1, то (1 + ni) = (1 + i)n .

Таким образом, для лиц, предоставляющих кредит:

более выгодна схема простых процентов, если срок ссуды менее года (проценты начисляются однократно в конце года);

более выгодной является схема сложных процентов, если срок ссуды превышает один год;

обе схемы дают одинаковый результат при продолжительности периода один год и однократном начислении процентов.

Пример 8. Сумма в размере 2"000 долларов дана в долг на 2 года по ставке процента равной 10% годовых. Определить проценты и сумму, подлежащую возврату.

Наращенная сумма

FV = PV (1 + i)n = 2"000 (1 + 0"1)2 = 2"420 долларов

FV = PV kн = 2"000 1,21 = 2"420 долларов,

где kн = 1,21 (Приложение 2).

Сумма начисленных процентов

I = FV - PV = 2"420 - 2"000 = 420 долларов. 6>>>

Таким образом, через два года необходимо вернуть общую сумму в размере 2"420 долларов, из которой 2"000 долларов составляет долг, а 420 долларов – "цена долга".

Достаточно часто финансовые контракты заключаются на период, отличающийся от целого числа лет.

В случае, когда срок финансовой операции выражен дробным числом лет, начисление процентов возможно с использованием двух методов:

общий метод заключается в прямом расчете по формуле сложных процентов:

FV = PV (1 + i)n,

где n – период сделки;

a – целое число лет;

b – дробная часть года.

смешанный метод расчета предполагает для целого числа лет периода начисления процентов использовать формулу сложных процентов, а для дробной части года – формулу простых процентов:

FV = PV (1 + i)a (1 + bi).

Поскольку b < 1, то (1 + bi) > (1 + i)a, следовательно, наращенная сумма будет больше при использовании смешанной схемы.

Пример. В банке получен кредит под 9,5% годовых в размере 250 тыс. долларов со сроком погашения через два года и 9 месяцев. Определить сумму, которую необходимо вернуть по истечении срока займа двумя способами, учитывая, что банк использует германскую практику начисления процентов.

Общий метод:

FV = PV (1 + i)n = 250 (1 + 0,095)2,9 = 320,87 тыс. долларов.

Смешанный метод:

FV = PV (1 + i)a (1 + bi) =

250 (1 + 0,095)2 (1 + 270/360 0,095) =

321,11 тыс. долларов.

Таким образом, по общему методу проценты по кредиту составят

I = S - P = 320,87 - 250,00 = 70,84 тыс. долларов, 7>>>

а по смешанному методу

I = S - P = 321,11 - 250,00 = 71,11 тыс. долларов.

Как видно, смешанная схема более выгодна кредитору.

При пользовании финансовыми таблицами необходимо следить за соответствием длины периода и процентной ставки.

Сравните полученный результат с результатом примера 1. Не трудно заметить, что сложная ставка дает большую сумму процентов.

При расчете по смешанному методу результат всегда оказывается больше.

Областью применения простых процентов чаще всего являются краткосрочные операции(со сроком до одного года) с однократным начислением процентов (краткосрочные ссуды, вексельные кредиты) и реже -- долгосрочные операции.

При краткосрочных операциях используется так называемая промежуточная процентная ставка, под которой понимается годовая процентная ставка, приведенная к сроку вложения денежных средств. Математически промежуточная процентная ставка равна доле годовой процентной ставки. Формула наращения простых процентов с использованием промежуточной процентной ставки имеет следующий вид:

FV = PV (1 + f * r),

FV = PV (1 + t * r / Т),

t -- срок вложения денежных средств (при этом день вложения и день изъятия денежных средств принимаются за один день); Т -- расчетное количество дней в году.

Придолгосрочныхоперациях начисление простых процентов рассчитывается по формуле:

FV = PV (1 + r * n),

где n -- срок вложения денежных средств (в годах). ,

Применение сложных процентов

Областью применения сложных процентов являются долгосрочные операции (со сроком, превышающим год), в том числе предполагающие внутригодовое начисление процентов.


В первом случае применяется обычная формула начисления сложных процентов:

FV = PV (1 + r)n.

Во втором случае применяется формула начисления сложных процентов с учетом внутригодового начисления. Под внутригодовым начислением процентов понимается выплата процентного дохода более одного раза в год. В зависимости от количества выплат дохода в год (m) внутригодовое начисление может быть:

  • 1) полугодовым (m = 2);
  • 2) поквартальным (m = 4);
  • 3) ежемесячным (m = 12);
  • 4) ежедневным (m = 365 или 366);
  • 5) непрерывным (m -» ?).

Формула наращения при полугодовом, поквартальном, ежемесячном и ежедневном начислении сложных процентов имеет следующий вид:

FV = PV (1 + r / m)nm,

где PV -- исходная сумма;

г -- годовая процентная ставка;

n -- количество лет;

m -- количество внутригодовых начислений;

FV -- наращенная сумма.

Процентный доход при непрерывном начислении процентов рассчитывается по следующей формуле:

где: e = 2, 718281 -- трансцендентное число (число Эйлера);

е?n -- множитель наращения, который используется как при целом, так и дробном значении n;

Специальное обозначение процентной ставки при непрерывном начислении процентов (непрерывная процентная ставка, «сила роста»);

n -- количество лет.

При одинаковой величине исходной суммы, одинаковом сроке вложения денежных средств и значении процентной ставки возвращаемая сумма оказывается больше в случае использования формулы внутригодовых начислений, чем в случае использования обычной формулы начисления сложных процентов:

FV = PV (1 + r / m)nm> FV = PV (1 + r)n.

Если доход, полученный при использовании внутригодовых начислений, выразить в процентах, то полученная процентная ставка окажется выше той, которая использовалась при обычном начислении сложных процентов.

Таким образом, первоначально заявленная годовая процентная ставка для начисления сложных процентов, называемая номинальной, не отражает реальной эффективности сделки. Процентная ставка, отражающая фактически полученный доход, называется эффективной. Классификацию процентных ставок при внутригодовом начислении сложных процентов наглядно иллюстрирует рисунок.


Номинальная процентная ставка задается изначально. Для каждой номинальной процентной ставки и на ее основании можно рассчитать эффективную процентную ставку (rе).

Из формулы наращения сложных процентов можно получить формулу эффективной процентной ставки:

FV = PV (1 + r)n;

(1 + re) = FV / PV.

Приведем формулу наращения сложных процентов с внутригодовыми начислениями, при которых каждый год начисляется r / m процента:

FV = PV (1 + r / m)nm.

Тогда эффективная процентная ставка находится по формуле:

(1 + re) = (1 + r/m)m,

re = (l + r/m)m- 1,

где rе -- эффективная процентная ставка; r -- номинальная процентная ставка; m -- количество внутригодовых выплат.

Величина эффективной процентной ставки зависит от количества внутригодовых начислений (m):

  • 1) при m = 1 номинальная и эффективная процентные ставки равны;
  • 2) чем больше количество внутригодовых начислений (значение m), тем больше эффективная процентная ставка.

Областью одновременного применения простых и сложных процентов являются долгосрочные операции, срок которых составляет дробное количество лет. При этом начисление процентов возможно двумя способами:

  • 1) начисление сложных процентов с дробным числом лет;
  • 2) начисление процентов по смешанной схеме.

В первом случае для расчетов применяется формула сложных процентов, в которой присутствует возведение в дробную степень:

FV = PV (1 + r)n+f,

где f -- дробная часть срока вложения денежных средств.

Во втором случае для расчетов применяется так называемая смешанная схема, которая включает формулу начисления сложных процентов с целым числом лет и формулу начисления простых процентов для краткосрочных операций:

FV = PV (1 + r)n * (1 + f * r),

FV = PV (1 + r)n * (1 + t * r / Т) .